2D-Elektronik aus Graphen rückt näher

2D-Elektronik aus Graphen rückt näher

Mikroskopisch präzise: Graphen-Eule (Ausschnitt).  (Foto: Zheng Liu/Rice University)

Houston / Zürich – Forschern der Rice University ist ein wichtiger Schritt auf dem Weg in Richtung zweidimensionaler Elektronik aus dem Wundermaterial Graphen gelungen. Sie haben es geschafft, wirklich nur atomdicke Schichten zu fertigen, die das leitfähige Kohlenstoff-Material in präzisen Mustern mit einem passenden Isolator kombinieren. «Es sollte möglich sein, voll funktionsfähige Geräte mit Schaltkreisen von 30 oder 20 Nanometern in 2D zu fertigen», meint Jun Lou, Maschinenbauer und Materialforscher an der Rice University. Das könnte beispielsweise neue Möglichkeiten in Sachen flexibler Elektronik eröffnen.

Die in Nature Nanotechnology veröffentlichte Arbeit ist Jürg Osterwalder, Oberflächenphysiker an der Universität Zürich, zufolge sehr interessant. «Graphen bietet zusätzlich zu Anwendungen in der Elektronik und als transparenter Leiter auch die Möglichkeit, gewisse Quanteneffekte bei Raumtemperatur zu sehen, die bei konventionellen Materialien nur bei sehr tiefen Temperaturen auftreten», erklärt der am EU-Flagship-Projekt Graphen beteiligte Forscher gegenüber pressetext. Ein Beispiel dafür ist der Quanten-Hall-Effekt, den sich die Präzisionsmesstechnologie zunutze macht.

Leiten allein reicht nicht
Das atomdicke Kohelnstoff-Material Graphen gilt aufgrund seiner Leitfähigkeit als hochinteressantes Elektronik-Material. Doch für wirkliche Elektronik reicht ein Leiter nicht, es braucht unter anderem auch isolierende Komponenten. Dafür setzt das Rice-Team auf hexagonales Bornitrid, da dies ebenso wie Graphen eine sechseckige Wabenstruktur hat. Den Forschern ist es gelungen, beide Materialien in einer nur ein Atom dicken Schicht zu kombinieren und dabei wirklich präzise Strukturen herauszuarbeiten. Dazu haben sie in einem lithografischen Verfahren Graphen in Lücken eingebettet, die in das Bornitrid geätzt wurden.

Wie genau das gelingt, zeigt beispielsweise ein winziges Bild des Universitäts-Maskottchens, einer Eule. Einzelstrukturen sind dabei rund 100 Nanometer gross, doch mit aktuellen lithografischen Techniken sollten dem Team zufolge Strukturen mit einem Fünftel dieser Grösse möglich sein – was in etwa der Strukturgrösse aktueller Silizium-Halbleitertechnologie entspricht. Als nächstes will man einen Halbleiter als dritte Komponente in seine Materialschicht einbetten. «Wenn das gelingt, können wir wirklich integrierte planare Geräte fertigen», so Rice-Forscher Zheng Liu.

Lohnende Herausforderung
Das Ziel des Rice-Teams ist ambitioniert, immerhin erfordert vollwertige Elektronik viele Komponenten wie etwa Gate-Elektroden zu Transistoren. «Rein zweidimensional zu bleiben, ist sicher schwierig», meint daher Osterwalder. Ausserdem sei mit Blick auf die potenziellen Anwendungsmöglichkeiten die Frage, wie exakt die Grenze zwischen den einzelnen Materialbereichen ausfallen. «Mit lithografischen Methoden erreicht man schwerlich atomare Präzision», so der Physiker.

Gelingt es wirklich, 2D-Elektronik zu fertigen, wäre das nicht nur für Bereiche wie flexible Elektronik interessant. Profitieren könnte unter anderem auch die Präzisionsmesstechnologie in der Metrologie, der Lehre von Massen und Masssystemen. Dort gäbe es Osterwalder zufolge potenziell weiteres Anwendungspotenzial für 2D-Elektronik jenseits von konventionellen Bauelementen, beispielsweise Einelektronentransistoren. (pte/mc/ps)

Schreibe einen Kommentar